Philae Fall


The misadventures of the famous Philae lander have been the hot scientific topic of the week. 10 years of preparation, hard work and effort finally came to fruition when the robot detached itself from the Rosetta Spacecraft after being together for a decade and set off on its journey to comet 67P/Churyumov–Gerasimenko.

philae

How Philae was supposed to look on the surface of 67P

A couple days before the actual separation, ESA, the European Space Agency, which has been supervising the mission all these years; carried out a series of tests to make sure all the machinery in the lander worked perfectly. There was a minor problem with the thrusters, but since there was nothing scientists at Earth could do to fix it, they decided to keep the mission going anyway.

On the 12th of November of 2014, Philae made history when it became the first object to ever land in a controlled manner on a comet. And although this feat is outstanding and impressive by itself, there were some technical difficulties. The idea was that the lander would fire some harpoons to adhere to the comet and use thrusters so that together, they would push the robot towards the comet. But neither of these devices worked as planned, so when Philae did ‘land’, it bounced back. Twice. The first bounce made Philae jump almost 1km high into space (another record), and took the incredible amount of 2 hours for it to fall back. The second leap was much smaller, and only took a couple of minutes for it to settle down. But this was not the last obstacle in Philae’s way. Due to all the bouncing around, the machine ended up about 1 km away from the original landing site, and on top of that, it has stopped in a rather unusual posture. Instead of having its three legs on the pressed on the ground, one of them is dangling midair.

Facing these problems head-on, scientists still tried to carry out some of the proposed experiments. For example, they wanted Philae to take a sample of the comet dust using a drill incorporated into it. This apparatus comes out of the bottom part of the robot, but since Philae is sloping, the drill couldn’t actually reach the ground.

But Philae actually has more pressing problems at the moment. After bouncing all around 67P, it stopped in an area of the comet where the sun rays can’t reach; a fatal location for a solar powered machine like Philae. This soon alerted scientists regarding the duration of the battery, which would quickly run out. The solution was to turn on a ‘power-saving’ mode, but right in the middle of this process they lost contact with the robot. As of the 15th, Philae has used up all its stored energy and has basically shut down. There is still hope that when 67P reaches areas closer to the Sun, the lander will become powered again, but chances are slim.

Regardless of the many problems with the landing and its consequences, Philae did end up on a moving comet, and that’s reason enough to congratulate scientists at ESA for so many years of dedication and a successful mission.

The Potato Controversy


Genetically Modified food has been controversial for many years now, and has a long history of arguments between food manufacturing companies and people against ‘unnatural’ food. The new chapter in this story involves none other than a potato.

Simplot, a company known for its normal and genetically modified potatoes, has created a new product which they call ‘the Innate Potato’, because of how natural it is compared to other GM crops.

To make this potato novel and unique in the GM market, Simplot has created it using RNA interference technology. This method uses RNA strands from other potatoes with different characteristics and mashes them together, to create a sort of Frankenstein Monster potato. The result is much more appealing than the name suggests. By combining many positive qualities from different potatoes, you end up with a potato with numerous benefits. This particular potato, for example, has proven resistant to bruises, and produces fewer carcinogens when fried. Usually, when normal potatoes are fried, the amino acid asparagine can react to form acrylamide, a suspected carcinogen. When tested, Innate Potato produced up to 75% less acrylamide when heated.

mcfries

Someday in the future, it is possible that McDonalds fries are made from genetically modified potatoes

Not only that, but since it only uses genes from natural potatoes, and doesn’t use genetic material from other species like bacteria, it is immune to many of the usual complaints of GM-haters, which dislike the idea of mixing genes between two opposite species.

In spite of the strong opposition, the Innate Potato has already been approved by the USDA, (the Unites States Department of Agriculture), so it could potentially be sold to customers anytime now. In fact, rumour has it that McDonalds, one of Simplot’s biggest customers, might use the potato in the near future to make their well-known McFries. This, of course, has caused a heated debate where some opposers of these potatoes are pressuring the fast food company to reject them. McDonalds’ decision concerning this matter is still unknown.

However, Simplot only plans to grow a limited number of these super potatoes for now, so regardless of McDonalds’ decision we’ll probably have to wait quite some time to taste them.

Until then, McFries are still delicious.

Plant Sun Cream


We’ve all spent a little too much time on the beach and gotten sunburn: when our skin gets red and aches. But have you ever wondered how plants, which spend their whole life sunbathing, never get burnt? Scientists in Indiana asked themselves this same question and here’s what they found out.

For a plant to survive, it needs to carry out photosynthesis, which uses ultraviolet light as energy to drive the whole process to completion. But UV radiation is also what harms us and causes sun burns. There is an obvious problem here, because how can plants absorb UV for photosynthesis but also block it to remain healthy? This is a bit of a trick question, as there are many different types of ultraviolet radiation depending on the frequency, each one with its own properties. The one we’re interested in today is UV-B since it is the one that commonly causes sunburns.

plant sunlight

Light can be dangerous, so plants have developed a mechanism to both utilise light but protect themselves from it too

It’s been known for a while that a group of molecules, called sinapate esters, are found on a top layer of plant epidermis, and their abilities include absorbing light energy for photosynthesis and blocking the harmful frequencies. Now, these seem like the answer to the question I posed before, right? Yes, but until now, scientists, although they knew their effects, didn’t know precisely how they worked.

Here’s when the team at Indiana, lead by Timothy Zwier, come into the picture. They decided to investigate sinapoyl malate, a certain sinapate ester that can do most of the radiation absorbing by itself. To find out what frequencies this chemical absorbed, they went through a very interesting process. It starts by cooling a sample to close to O degrees Kelvin, or absolute zero. This causes it to become gas molecules, which can be kept functional if they are surrounded by argon gas atoms. Then, a UV-B laser is shot at them and the frequencies absorbed and transmitted are ready to be measured.

The results were absolutely fascinating. This small little molecule, when covering a leaf or any plant structure, can absorb the whole of the UV-B spectrum of light, effectively blocking all common harmful light. By doing this, the interior of the plant is left unharmed and protected form the adverse effects of radiation, including mutations in the fragile DNA sequence.

It is a truly effective method, since plants are exposed to sunlight all day long and are never burnt, so some possible applications of this substance include the production of suntan lotion for us humans lacking godly molecules on our skin, or creating even more UV-protected plants in case of increased UV radiation, like that caused by the disappearing ozone layer.

 

If you want to read the article: http://pubs.acs.org/doi/abs/10.1021/ja5059026

Chocolate Memories


Everyone loves a good cup of hot chocolate, except those weirdos who don’t, but now it seems this tasty treat could actually have tremendous benefits other than its deliciousness.

hotchocolate

What’s not to like?

Memory deficit usually comes hand in hand with old age. To shed some light onto this problem, scientists at Columbia University carried out an experiment on volunteers aged 50 to 69. These people were divided into two groups; one was given normal hot cocoa, whilst the other was given the same beverage but with increased amounts of flavanol. Flavanol is a chemical commonly found in chocolate, but which also appears in vegetables, fruits and even tea.

Before the investigation started, the patients had an MRI scan taken, and went through a memory test. In it, the volunteers were shown a group of about 40 shapes, and after a minute, they were shown a larger group of shapes, in which they had to recognize the previous ones. During the three months the study lasted, they were given two cups of the drink every day. After this period of time, MRI scans were taken again and the subjects repeated the test.

The results were astonishing. After being given this high-flavonol diet, the patients of the study had improved their memory by a highly considerable amount. It had even become similar to that of a person 30 years younger, as shown by the memory test. The MRI scans also revealed some striking information. There was an increased blood flow in the dentate gyrus of the patients, an area of the brain in the hippocampus, by almost 20%, which had been previously related to memory problems in elderly people.

But if you’re between 50 and 69 years old, don’t start stuffing yourself with chocolate. The flavonol content of those drinks which enhanced memory was of 900mg, which is 90 times as much flavonol as a normal chocolate bar. However, it is still an interesting discovery, which most scientists agree should be investigated further, in greater trials, and with more variables considered.

Paralysis Cured By A Nose


Paralysis is a terrible condition suffered by over 3 million people, but can actually affect anyone and has very few solutions. In an almost miraculous turn of events, this has now changed thanks to scientists, doctors, and curiously enough, a chef.

David Nicholls is a world-known, Michelin Starred-chef whose son Daniel became paralysed in an accident in 2003. Since then, he has tried everything possible to help his son, including creating the Nicholls Spinal Injury Foundation (NSIF) which aims to raise awareness of paralysis and fund any promising cure projects.

Spinal surgery breakthrough

Darek Fidyka, showing the extent of his recovery

One of these donations was used by a team of researchers at UCL to pioneer a mechanism for nerve regeneration in spines. They were lead by Professor Geoffrey Raisman, a scientist with a long history in nerve cell innovations. He was the discoverer of ‘plasticity’, a quality our bodies possess by which damaged nerve cells can regenerate. Although this idea was controversial at first, it eventually opened the door for possible repair treatments.

His newest brilliance involves implanting cells from the nose to the damaged area in the spinal cord. But this doesn’t work with any nose cells. It specifically requires OECs, which stands for olfactory ensheathing cells, and their role is to repair broken nerve cells in the nose so that communication between these and the brain is restored, and our sense of smell works correctly.

This idea was applied by a group of doctors in Poland, lead by spinal repair expert Dr Pawel Tobakow, with surprising results. The patient they treated was Darek Fidyka, a man who was stabbed in the back so his spinal cord was cut in two, leaving a gap with severed nerve cells. The operation consisted of implanting Fidyka’s OECs into the gap where these, instead of healing nose nerve cells, would bridge the separated spinal nerve cells so given time and the appropriate rehabilitation, the spine would no longer be divided into two.

And so it happened. Two years later, the nerve cells on either side of the cut have regenerated and the connection between these has been re-established, effectively ‘curing’ the paralysis. The changes to Fidyka’s life have been enormous. Weeks ago, he wasn’t even able to feel his legs. Now, not only is he regaining some feeling, but can also walk and is even capable of driving a car! More patients are waiting to be treated with this method in hopes of recovering from this horrendous condition and to prove this treatment effective enough so even more injured people can be cured and the fullness of their lives restored.

Nobel Prizes 2014: Part 2


Today, with Jean Tirole being awarded the Economics Nobel Prize, was the last day of the Nobel Prize award season. Last week, we looked into the winners for physiology and physics, so we still have one scientific award to investigate: chemistry.

The 2014 Nobel Prize for Chemistry went to… Eric Betzig, Stefan W. Hell and William E. Moerner for “the development of super-resolved fluorescence microscopy”.

Microscopes are a valuable tool for all scientists, from physicists examining subatomic particles to biologists investigating cells. But for many years, it was believed that microscopes were limited in how much magnification they could provide. The smallest they could go was 200 nanometres, or at least that was what they though until these laureates came along. The key to their innovation was brought by the use of fluorescence to increase resolution.

Hell created a mechanism called STED (Stimulated Emission Depletion) to take higher resolution pictures which involved laser lights. As an example, he used an E. coli bacterium coated with fluorescent molecules and a special microscope which emitted two tiny rays of light. One of these excited some molecules so certain parts of the bacterium glowed, whilst the other did the opposite, and made the sample duller. This might seem contradictive, except the centre of the convergence was left to shine, so only a small area was illuminated. A picture was then taken of the glowing part, and the procedure repeated at many angles. Combining the pictures taken, he was able to form an image of an unprecedented resolution.

microscope

Imagine being able to look deeper into cells – it’s possible now thanks to this year’s Chemistry winners

This is close to what Moerner and Betzig did. They used fluorescent proteins, which could be activated by short pulses of lights. They shone these onto a different part of the sample every few milliseconds, so they only glowed for a short period of time. By superimposing the images of the lighted parts, they were able to capture individual molecules in images! This amazing method is now called single-molecule microscopy and has been used in a wide variety of studies, from HIV research to gene modification.

Thanks to these men’s work and dedication towards science, we can now see deeper into our world than we have ever done before. A few years ago, we could only look at individual cells, never inside of them. But now, we can actually see what they contain, into their small organelles like mitochondria and the Golgi body that allow cells to do all the complex processes that keep us alive. Not only this, we can actually investigate individual molecules from chemicals, advancing the field of chemistry. Their contribution to our knowledge pool is immeasurable, both directly and indirectly, and for this, they are well-deserving of the Chemistry Nobel Prize.

Nobel Prizes 2014: Part 1


Probably the most prestigious scientific award, the Nobel Prize is, for many, the intellectual event of the year, where the world’s greatest scientists are rewarded for their hard work and brilliance. As of yet, only two results have been announced, those for physics and physiology, and the rest will be unveiled as the week progresses.

The 2014 Nobel Prize for Physiology or Medicine went to… John O’Keefe, May-Britt Moser and Edvard Moser for discovering the ‘GPS’ system in brains.  

human gps

Not a literal GPS in our head, but a group of cells that enable us to travel

It all started 40 years ago, when O’Keefe was investigating rats’ brains and their response to certain stimuli to understand their behaviour. In one experiment, he found that in a group of nerve cells in the brain, some became active when the rat physically moved to one area of the room, whilst other cells became active in other areas of the room. The conclusion he reached was that this group of cells was making a mental map of the rat’s environment to help it locate itself and move around. The ‘place cells’, as he called them, were a revolution in the field, but it took O’Keene 40 years and two collaborators to win the famous Prize.

The other recipients of the award are the Mosers, a married couple who, working in O’Keene’s lab, examined in more depth the mechanism and using modern technology, discovered that a close group of cells in the entorhinal cortex also helped in movement. What they found was that these new cells could be active in many positions of the room, not just one specific location. ‘Grid cells’ is their name and they do exactly what their name would suggest: they create a grid of their surroundings.

Both the place cells and the grid cells are used in human brains too, and their work is essential for us to be able to travel, even from one room to another, without getting lost.

The Nobel Prize for Physics went to… Shuji Nakamura, Isamu Akasaki and Hiroshi Amano for the invention of blue LEDs.

At first sight, it looks like they gave these men a Nobel Prize for inventing a bulb, but it is much more complex than that. First of all, let’s explain what an LED is and how it works. An LED stands for Light-Emitting Diode and it is used to produce light. It works by having thin sheets of material over each other, some of which contain a lot of electrons whereas other don’t and so have positive ‘holes’. When an electron collides with this hole, it emits a photon; a particle of light.

blue led

Making blue light is much harder than it may seem!

Red and green LEDs have been around for a long time, but only blue light could be transform into white light. The problem is that blue light has a higher energy and therefore very few materials can emit this wavelength. So when Akasaki, Amano and Nakamura discovered gallium nitride, it was a real miracle. This material is special because apart from having electron-rich areas, it can also produce a layer of itself which lacks electrons, so that together, they can react and produce blue light.

This apparently simple mechanism has had unimaginable consequences, which is the main reason why the Royal Swedish Academy of Sciences has decided to award them the prize. Blue LEDs gave us the opportunity to make white light by coating the bulb with a substance called phosphor. Thanks to this combination, we now use blue LEDs everywhere, from our TV screens to the lightning in the streets. The advantage it has over the normal, incandescent bulbs is that it can last 100 times longer, and is extremely more efficient. In fact, it is said that if all light bulbs were switched to these energy saving ones we could half the electricity usage by lightning in the whole world.

Alien Molecule


isopropyl cyanide

Isopropyl Cyanide, the molecule found light years away that could tell us about how we were formed

Where did life come from? Are we alone in the universe? These are common questions which scientists from all around the world are trying to answer everyday, and that have yet to be answered. But we could be closer to understanding the origin of life thanks to the combined work of researchers at Cornell University, the Max Planck Institute, and Cologne University in Germany, who have discovered a complex organic molecule deep in the heart of the universe.

The molecule itself is isopropyl cyanide and consists of carbon, hydrogen and nitrogen. Compared to other chemicals floating around in space, it’s special because it’s branched, rather than straight, and larger than usual. In fact, it may be the largest molecule ever detected in a region of space without a fully formed star.

Obviously, scientists didn’t go all that way themselves to retrieve a sample of the compound to analyse it, and sounding rockets don’t go that far. Instead, they used ALMA, a set of radio telescopes in Chile which can detect microwaves produced by chemicals many light years away, to scan an area of space an examine its chemical makeup. Surprisingly, they found isopropyl cyanide, 400 light years away, in gas cloud Sagittarius B2, where a star is in the process of being formed.

It is not a clear sign or of life, so all you crazy UFOs enthusiasts can calm down, but it is an interesting discovery. Its complex structure, although simpler, is reminiscent of amino acids, the building blocks of life. These are often found in meteorites, so a popular theory is that the ingredients for life were formed in space and then drifted onto our planet, where they became ‘alive’.

Finding out more about how this chemical is formed and the conditions under which it is produced could be used to paint a better picture of how life managed to originate in our planet.

 

Shedding Light on Light


Messing around with the very essence of matter, scientists at Princeton University in New Jersey have managed to change the nature of light into unprecedented characteristics.

To do so, all you need is a superconducting wire with photons flowing through it and a machine containing 100 billion atoms made of superconducting material. Easy, right?

These atoms can then be modified to act as one single atom, thanks to the unusual properties of superconduction and so once this is done, you just need to push these two objects closer to end up with a group of photons acting like crystals.

light

Light as we know it has drastically changed

This is so bizarre because usually, photons of light are free from interacting with each other. But in this experiment, they were able to ‘bond’ together to form a crystal structure. This happens because of a quantum process called entanglement, where two photons can become connected over large distances. When the giant atom was brought closer to the photons, these linked to it and exhibited similar properties to it, effectively making light solid. The mechanism could be varied so that light behaved like a liquid or a gas, and with further refinements, like even more exotic materials such as superfluids; fluids with zero viscosity which flow defying gravity.

Although this discovery sounds like just interesting information, it actually has applications. Obviously, it is important to understand matter and how it works (a science named condensed matter physics), since it brings us closer to discovering new materials or characteristics of objects which we can use in our favour. For example, it could help devise the very sought-after room-temperature superconductor, with which electricity could be transmitted in our day-to-day lives with an incredible efficiency, since it offers no resistance.

As if the nature of light wasn’t hard enough to comprehend already, with wave-particle duality, here’s a new behaviour to complicate things even more. Sorry, students, sounds like you’ve got something else to make sense of.

Superhero Chloroplasts


This week, I bring you another plant-related article, this time discuss how scientists are trying to upgrade the photosynthetic process in plants.

chloroplast

A chloroplast, which, in the future, could be filled with honeycomb-like structure called carboxysomes

It has been a billion years since an eukaryote ingested a chloroplast and by accident created the essential symbiotic relationship to which we owe all the energy by which we survive. However, the way chloroplasts work hasn’t really changed in all these years, even though the environment has, and its system is quite obsolete. On the other hand, the descendants from the species of the first chloroplast, the cyanobacteria, have really changed their photosynthesis, which is much more efficient than that of chloroplasts.

The main difference between our world and the world a billion years ago, at least for this topic, is CO2 and 02 levels in the atmosphere. Before, there was an enormous amount of carbon dioxide in the atmosphere, which cyanobacteria and chloroplasts could exploit to produce food by photosynthesis. But as plants became more abundant, they absorbed the CO2 and released 02 , giving rise to our current balance of elements in the air. The most favourable conditions for a fast photosynthetic rate are high levels of CO2 in the air but since this is not the case anymore, there is a need for some changes in the organisms themselves. Plants, which have remained mostly unchanged, have reduced their efficiency, whereas cyanobacteria, which have evolved, actually improved it. The key to their success lies in their ability to maintain high levels of CO2 within the cell, thanks to carboxysomes. These are tiny, regularly-shaped compartments that fill the bacteria, and are specialised in maintaining CO2 trapped in them, so there is more of it available for photosynthesis. They even have protein pumps in their membrane which actively pumps CO2 into the cell.

This unique mechanism is what scientists are now trying to copy into a normal plant chloroplast. To do so, they would use genetic engineering: adding genes from the marvelous cyanobacteria to the chloroplasts so they would develop the pumps, which could increase efficiency between 15-25%; an outstanding upgrade. Transferring the carboxysome technology would be a bit more complicated, requiring more genes and the knowledge on how to make the structure itself, which at the moment is lacking.

Still, this innovative improvement offers an immense upgrade, which would sure be useful to farmers and food suppliers, who have found a rapid increase in their customer pool but a slow increase in their yield, a problem which could be remedied if this solution worked.

As always, there is some opposition, arguing that if plants have evolved for millions of years and have never developed a new way for photosynthesis to occur, there must be a reason for a reason, so natured shouldn’t be tinkered with. The pros and cons for this situation are many, and it is a subject which divides the scientific community.