Tree of 40 Fruits

I’m sure we’ve all seen a tree or two at some point in our lives, sometimes carrying fruit, but never a single tree with branches full of 40 different varieties of fruit.

This truly innovating project was actually led not by a scientist, but by an artist. His name is Sam Van Aken, and he is an art professor at Syracuse University in New York who some years ago planned to create a tree where each branch produced a different fruit, so that in spring, every branch would bloom into a different colour, but all in shades of pink, white and red.

tree 40 fruit

A CGI image of what the tree will look like in spring

To accomplish this gardening feat, he used a technique called chip grafting. It consists of cutting a fragment of a flowering tree that gives one type fruit (including the bud), and adding that onto a previously-made cut on the ‘master tree’ (the original tree that will hold all the different fruits). Then, it is held together with tape and left during the winter so the two parts join.

And so step by step, the tree became larger, and every year it had the ability to produce more and more fruits until, after 9 years, it could make up to 40 types. This project has been carried out for quite some time, so now, in total, there are 16 of these hybrid trees, each with a different combination of fruits. However, they all produce variations of stone fruits, like apricots, cherries, plums and peaches because they are easily compatible. To find these trees, you should look all over the US, in museums and community centres, or if you’ve got enough money to spend on this, you can even buy your own for around $30,000.

The idea originally was just to create beautiful trees as a work of art, but as Van Aken was collecting different varieties of fruits to add to his trees, he discovered a growing problem: a lower variety of species had become available, and only a few were being grown at an industrial scale. The less-common varieties were not being used because they were not as good for selling: the colour may not be as appealing, the size may be too small or too large, or the may last very little time on the shelf. This meant that some of the native, antique species were being lost, which worried the artist and made him change the focus of the project onto conservation. So now, not only do his trees carry some of these rarer species so they are still around, but he’s also spending the money he earns from the ‘Trees of 40 Fruits’ into creating an orchard collecting all the different varieties of stone fruit, especially the uncommon ones, so they are still go and people can even go and have a taste!

Meeting Pluto (The Planet)

NASA made history this week, once again, when the project New Horizons, launched 9 years ago, reached the ‘ex-planet’ Pluto and its surrounding moons. Ever since it has arrived, it’s been sending us information from there, and putting it lightly, it has been a rollercoaster of emotions.

Scientists previously believed Pluto to be a calm, inactive dwarf planet; just a mass of ice and frozen gases floating around the Solar System. But defying all these expectations, Pluto seems to be very geologically active, actually similar to Earth, (or rather, one of Neptune’s moons, since it has a large ice mantle).

The clues that point to this surprising conclusion are many. For one, there are areas with no signs of craters caused by asteroid collisions, which would be impossible unless these sections are relatively new, as they would be if they had been formed recently by geological activity. There are also fault lines and rift valleys, both characteristic features of tectonic movement.

However, scientists are still puzzled as to how these movements are brought about. In Earth, tectonic movements happen because of the melted rock in the core of the planet, but this is not possible in Pluto, so a popular theory suggests that since it is filled with radioactive material (like most astronomical bodies), this somehow produces enough energy to heat up the surface of Pluto and causes the movement of large amounts of ice that act as tectonic plates.

But don’t think this trend of unexpectedness stops at Pluto. Its largest moon, Charon, is not far behind. It also displays signs of being geologically active, as it has deep canyons and very smooth expanses.


Pluto sure is a sweetheart

Since many new areas in Pluto and Charon have been true wonders, scientists have decided to give them appropriate names. The most famous one, unofficially nicknamed ‘The Heart’ because it is heart-shaped, is now probably going to be known as Tombaugh Regio in honour of Clyde Tombaugh, the discoverer of Pluto in 1930. Another feature is a plane made of ice, which shows troughs at regular intervals, and has been dubbed the Sputnik Planum, in honour of the first spaceship. The Norgay Mountains are named after the first Sherpa to climb Mount Everest, and are a range of 3300 meter-high mountains made entirely of frozen ice which behaves like rocks. Astronomers also seem to be huge fans of the Lord of the Rings trilogy, as they have named a feature in Pluto ‘Balrog’, a monster from this series, and a dark region in the pole of Charon is being called Mordor.

The mission also offered an opportunity to accurately measure Pluto’s diameter for the first time. The results show that it is 2.370 km large, possibly the largest of the five recognized dwarf planets in the Solar System.

Although the official flyby has ended, New Horizons’ adventures are not over. All this baffling information it has sent us only represents about 2% of all the data it has collected, so we can still expect many surprises from this mission for about 16 months as the rest comes in. And after the visit to Pluto, it is going to fly to the Kuiper Belt, a zone beyond the planets full of small icy bodies that may contain some interesting information as to how the Solar System was formed.

Super Brain Network

Although it may seem directly taken from a science fiction movie, scientists at Duke University have actually managed to connect the brains of several organisms so that without any real communication they have been able to work together to carry out tasks.

In a series of experiments, researchers opened the skull of both monkeys and rats and using electrodes and wires, linked members of the same species together so that, even if they could not share complex thoughts or emotions, they could synchronise their neural activity.

When doing some experiments on rats, the connection was investigated by having one of the animals undergo an electrical stimulus, so its brain activity increased. The other rats, despite not being stimulated directly, automatically changed their neural activity to match that of the first rat, so it looked like they too had received the stimulus, and felt its effects.

But not only does this connection make them more ‘empathic’, it also makes them more intelligent. When scientists sent temperature and atmospheric pressure information into their brains, coded by electrical impulses, the rats could put all the information they had received together and solve problems regarding the chance of rainfall. They could do this by themselves, without any linking, but the brain network helped them obtain better scores.


Linking brains is no longer a science fiction movie plot

With monkeys, three of them were connected through the motor region of their brains, after being trained individually to control a virtual arm with thoughts alone. Once they were connected, each was able to control only certain aspects of the arm’s movement, like only being able to move the arm horizontally and vertically, and even those abilities it had to share with another monkey, so that each had an equal contribution to the movement in that direction. However, as messy as this sounds, they synchronised and managed to work with each together, combining their skills to control the arm and grab an imaginary ball displayed on the computer.

The applications for this are not to make a huge human population brain network, where we can share our thoughts and emotions, as not only are they too complex for it to be possible to share them this way, but it would also be unethical and have privacy issues. However, it can be used in people who have had some damage to their brain. For example, someone who has suffered from a stroke and can no longer talk normally can be connected to a healthy person, so said area synchronises with the healthy area and accelerates the healing process.

Cystic Hallelujah

Cystic Fibrosis is an inherited genetic condition, where specialised cells called epithelial cells, found in the lining of vessels (like the lungs, the intestines, the reproductive ducts…) do not function correctly. Normally, they would produce mucus, a slimy substance that reduces friction and allows substances to pass through the tracts more easily, but when suffering from Cystic Fibrosis, the mucus becomes less runny, so it is not as efficient at lubricating.

The most common treatment is physiotherapy, where an expert massages the chest area to help move the mucus along. This is an important area to do so, since if the mucus in the lungs gets stuck, it could house bacterial infections and cause trouble breathing. But as much as this may help, it still doesn’t cure CF, so infected people may still die quite young (around 40 years old).

A possible solution which has been considered for over a quarter of a century, since the single gene responsible for causing CF had been identified, has been gene therapy. This technique consists of introducing a healthy version of the gene into the cells of an infected person, and using it to replace the mutated version. However, there are several complications involved, and it has never been fully possible to carry this out and obtain good results. But not anymore.


A liposome is a phospholipid bilayer, which can fuse with cell membranes and release the gene it contains

In a new study carried out on 116 infected people, half received a gene therapy treatment, and half received a placebo. The treatment was a solution of liposomes that carried the desired gene inside them, and which the participants had to inhale so it could easily reach the lung cells. Although both were administered for 9 months, their effects were measured until after 12 months, and to do so researchers in charge measured the volume of air participants would breathe in and out in a set period of time. The results didn’t disappoint. People treated with gene therapy not only saw a stabilisation in their lung performance, instead of the disease’s characteristic downfall, but also had 3.7% better breathing capability than those people who had been given a placebo.

Although it may not sound like an impressive feat, it certainly is. Consider this is only the first time this has ever actually worked, and that it was a scaled down version of the treatment. The dose could definitely be increased so the effects are much greater. And even if the change seems small, it could postpone the need for lung transplants for decades.

The Moon Is Keeping You Awake

You may have heard people justify a bad night of sleep because ‘it was a full moon’, and immediately dismissed it as a myth. Well, think again.

The moon affecting our sleep is not as weird and irrational as it sounds. In fact, it’s not even unheard of in the animal kingdom, as this is known to happen in many other organisms, from small worms to large marine animals, and can not only affect their sleep, but also their reproductive cycles. It even has its own name: the circalunar rhythm.


Now you know who to blame for a lack of rest

But to see if it could happen in humans too, a group of researchers from University of Basel, Switzerland, followed a group of patients who, like normal human beings, fell asleep every night, and every time gave the scientists their opinion on how well it went. Most agreed that on the day of or close to full moon, the sleep quality was lower and they felt less rested. But this could be a subjective or biased opinion by the patients. So the scientists backed this up with the most undeniable proof of all: science.

They measured the hormone levels, brain activity and any eye movements before, during and after falling asleep. In case you’re confused about why bother measuring eye movement; it is because during REM phase, where we actually ‘rest’, our eyes subconsciously move around (in fact, REM phase stands for Rapid Eye Movement phase). After conducting this research at different times of the month, and therefore at different stages in the moon cycle, what they found only supported what the people had said themselves: there was a decrease, of up to 30%, in the people’s brain patterns during sleep. Not only was the quality worse, but it was also shorter, as they took 5 more minutes to become unconscious and in total were deprived of almost 20 minutes of blissful sleep.

This could’ve all been due to a decrease in the levels of melatonin, a very interesting hormone which can be found in animals that somewhat ‘predicts’ when it is going to get dark and prepares us for sleep, so a lack of it could lead to us not sleeping as deeply.

But researchers don’t know how the moon can even affect the amount of this hormone in our body and can end up causing the other symptoms. It’s not the presence of moonlight, as this was eliminated by keeping the test subjects in closed rooms. So this leaves the two most plausible ideas being either that the moon’s gravity somehow manages to affects us even though it is extremely weak at such a large distance, or that humans have a physiological clock inside of them which keeps track of the moon cycles. Although this may sound just bizarre, it already exists; but instead of with the moon, it uses the Sun. You may have heard of it: it’s called the circadian rhythm and it has a great effect on us as thanks to it, our body knows how to behave at the different times of the day.

The test was only done on 33 people, quite a small sample regardless of how standardised the whole procedure was. So in future investigations, larger groups of people should be investigated to not only support these scientists’ hypothesis, but maybe to even find out the mechanism by which the moon manages to ruin a good night’s sleep.

Boosting Spiders

Arachnophobia, the fear of spiders, is one of the most common fears, affecting slightly less than 50% of women and 15% men. But regardless of how scary they can be, spiders are fascinating creatures, and you can’t deny their skill. They can spin the second toughest natural material in this planet: spider silk.

Spider silk can be found in spider webs, which are made by quite the process. It is called ballooning, a hilariously weird name that describes the method by which spiders release silk strings into the air so the wind carries them away, until they attach to a surface. Step by step, fibres criss-cross until a web is formed.

You may have already met this creation when cleaning your old, dusty attic or from running face first into them in the woods, but what many people don’t know is that its strength is, in proportion, comparable to that of steel. However, it may not seem as strong because it is much thinner and less dense.

But let’s not get too caught up in spiders and their ways of life. Although their silk can boast of incredible characteristics, we as humans always insist on pushing harder and trying to improve what we see. In this case, this lead to scientists to add a man-made touch into the mix to toughen up silk.

Two groups of spiders, both from the species Pholcidae, were kept in different environments. One group was sprayed with water and graphene molecules dissolved in it whereas the others got water with carbon nanotubes. Then, in a mechanism still unknown to the researchers, the spiders were able to use the carbon compounds in the solutions to make stronger silk. This could’ve happened because they drank the water and the graphene and carbon nanotubes ended up in the silk-producing areas of their bodies or more simply, because the silk ended up covered in the solution and the compounds coated it.

spider web

Let’s hope the toughened up spiders don’t rebel against us

That is what the team of researchers will be investigating further, but for now, they are basking in the glory of being able to produce the strongest fibre ever: an artificial silk between 3.5 and 6 times stronger than the natural version. In perspective, this means the silk produced by these buffed up spiders is just as strong as Kevlar, the material used in bulletproof vests.

Who knows where this coalition between spiders and humans could go next. One idea is to repeat the process with other animals, like silkworms, which also produce their own type of silk. Before though, they need to know how we could actually use this type of silk, whether in sutures and clothes or in the craziest idea yet: creating huge silk nets strong enough to catch and hold falling airplanes.

The Diamond Hunting Plant

Finding diamonds may have just gotten easy peasy. The very sought after rock is one of the most expensive gems in the planet, recognised not only as a sign of power and wealth, but also as an extremely useful material, due to its outstanding hardness.

But what also makes it a costly product is its elusiveness. Not only are they rare, they are also extremely hard to find. Usually, miners in Africa, where the largest diamond deposits are found, have no indication of where diamonds may actually be found, so they resort to mining at random. But imagine if there was a way to know where to find diamonds, like an indicator. Well, imagine no more. Scientist Stephen Haggerty has been studying the areas in Libya where diamond miners usually work, and has found an interesting pattern: within the dense forest full of trees and bushes, a specific plant species called Pandanus candelabrum seems to grow only near kimberlite deposits.

Pandanus candelabrum

Watch out! Diamonds may be lurking beneath this plant

Kimberlite, for those who don’t know, is the mineral ore from which diamonds are extracted. It is formed in the depths of the Earth, in a layer called the mantle where the temperature and the pressure are so immensely high that there is enough force to compress carbon into diamond. Then, thanks to eruptions of underground volcanic activity, whole veins of kimberlite and the diamonds they contain move upwards, into the Earth’s crust, where they can be mined.

The reason this type of plant only grows in such areas is clear: kimberlite provides the soil around it (and by extension, the plants living in it) minerals like magnesium, potassium, and phosphorus, making the area especially fertile and a perfect environment for Pandanus candelabrum to grow and reproduce there

However, it must be noted that although this plant is a reliable sign of kimberlite, it is not necessarily an indicator of diamonds. Only about 10% of the kimberlite pipes in the whole world actually contain diamonds, and only 10% of these contain enough diamonds to generate any profit. It still has a lot of potential though, as it at least gives miners a heads up on where to start mining and doesn’t leave it all to chance.

Equalitarian Blood

Blood flows around the body all the time, yet we barely see it unless we suffer from an accident. If this were the case, and we lost too much of it, we’d need a blood transfusion. But it is not as easy as just putting blood from one individual into another: you need to test it and make sure the blood is compatible.


Can you guess what antigens these red blood cells have?

This occurs because human blood can be divided into many categories. The most common one is the ABO group classification, which divides blood into four types: A, B, AB and O. In each, red blood cells (those cells specialised in carrying oxygen around the body) have a specific antigen depending on the blood type. For example, if you have group A blood, you will have A antigens; if you have AB blood, you will have A and B antigens; and most importantly, if you have O blood, you will have no antigens.

Each antigen stimulates a response from our immune system to produces antibodies against the other antigens. So if you have blood group A, you will produce antibodies that will destroy cells with antigen B, and vice versa. This is potentially very dangerous, because if you give someone of type A blood from a person of type B, the antibodies can attack each other’s red blood cells and wreck havoc in our bodies.

When it comes to transfusing blood, the best one is group O- since it has no antigens, so there is no way your body can attack it. That is why we call it universal, since it works for anyone, no matter their blood type. This makes it very sought after for blood transfusions, but there isn’t always plenty of it available.

But what if we could convert all blood into O type blood? We can’t change the genotype of adults so that their body produced it, but we can change the blood itself after the blood has been donated. The most successful way to do this would be to insert bacterial enzymes into the blood which can recognise antigens in the red blood cells and cut them off so they are just like red blood cells from O group blood.

In the experiment which created this mechanism, the original enzyme worked mostly with cells from group B only, so to make it effective on cells from group A too they used a very interesting method called directed evolution. It’s just as it sounds: they grew the bacteria that produce this type of enzyme, and slowly mutated their genome (by adding bases to their DNA) so that every generation produced a better enzyme. At the end of the experiment, after 5 generations of bacteria, the final enzyme was produced, which not only could severe A antigens, but was also an impressive 170 times more efficient than the original one.

Yet this method is still not perfect: the enzyme can’t modify all the thousands of red blood cells in a sample of blood and therefore can’t make it completely safe, as there will still be some red blood cells with antigens present. But with enough time, the scientists hope to perfect it and make the technique available so blood transfusions are easier to carry out.

Evil Twin’s Downfall

So what if we have an evil twin, like in the movies? If he/she commits a murder, and DNA evidence is found in the crime scene, both you and your evil twin will be suspects, since you share the same genetic material. Although this is a rare and unlikely scenario, it is definitely a possibility, and has actually happened several times throughout the years.

Usually, this will end in no one being prosecuted, since it would be impossible to determine which twin did it, and sending both to jail would be terribly unfair to the innocent sibling. A new option for the police in these cases is to analyse the DNA of both twins in incredible detail, searching for any slight variations that may have randomly occurred due to mutations and changed the genetic code, but this option takes a lot of time (over a month) and also happens to be very costly.


Now we can find out which twin actually did it

However, scientists have now come up with a sort of an upgrade to this method. Instead of looking for mutations, which occur randomly, they would look for differences in the DNA strands that have been caused by their way of life. These modifications are called epigenetic changes, and instead of causing a gene to change its sequence of bases, it just modifies how it is expressed into a protein. It can do this by adding a methyl group (-CH3) or by altering the histones in our DNA: the proteins that help condense our genetic information into a more compact shape so it can all fit into the nucleus of a cell.

These changes can be inherited, which would be unhelpful since both twins can have them, or caused by environmental factors, which would also be unhelpful if the twins have lived close together in the same conditions. Fortunately, very small differences can cause these changes, specifically in the early stages of the embryo’s development, so although still rare, these changes do exist in twins.

In the specific case of epigenetic changes by methylation, this would mean that the DNA strand is now larger, and has more molecules in it. This would increase the forces of attraction and increase its melting point. Since both twins will have different changes, and therefore different amounts of methyl groups, their DNA would not melt at the same temperature. So comparing their DNA’s melting temperature with that of the DNA found in the crime scene can tell the police which of the two twins did it, and solve the mystery in a much faster and cheaper process, as you only have to heat the suspects’ sample.

Puppy Dog Eyes

Dogs are the most popular pet in the world. They’re loyal, loving and most importantly, cute. But the reason we actually have them as our pets and may feel a connection to them lies beyond the heart, and in the realm of brain chemistry.

Humans release a hormone called oxytocin, the so called love-hormone, which creates feelings of affection and caring. It is produced by a mother gets when she stares into her child’s eyes, or by a spouse looking at their partner. And now, scientists have discovered, it is also liberated when a person makes eye contact or pets their dog, causing a bond to be formed. But, it’s not a one-side bargain: dogs also get a rush of oxytocin in their body, which makes them feel an emotional connection with their owners.

The experiment that discovered this looked into a group of people and their dogs, from breeds like Miniature Schnauzer or golden retrievers, and had them play in a room for half an hour, during which time they obviously touched and looked at each other. Before the test, the animals gave a urine sample, and after playtime was over, they gave another one. Oxytocin levels for all dogs were significantly higher after having spent time with their owners.

puppy dog

Can you feel the oxytocin flowing?

To investigate this further, they administered two solutions onto the dogs’ noses: on some, they sprayed an oxytocin solution; on others, they sprayed a salt solution to act as a placebo. The results supported the previous theory: those being sprayed with oxytocin spent more time looking into their owner’s eyes, and these corresponded by releasing more oxytocin into their system. But there was more to it. This effect only happened in female dogs. Male dogs did not provoke any change in behaviour or oxytocin levels. Although the reason is still not fully understood, and will be researched in future experiments, a possible theory is that in males, oxytocin can also cause animosity towards other people.

Interestingly enough, when the process was repeated with wolves and their owners it didn’t produce the same results, despite dogs and wolves being closely related. This may suggest that this mechanism was developed at a time when wolves and dogs were apart, such as when humans had already domesticating them.

However, don’t use this method to try and bond with any other wild animals. This could only work with dogs, as they are the only species other than humans that are known to release oxytocin because of eye contact. Usually, in the animal kingdom, eye contact actually means defiance, so it could get you in a lot of trouble…