On Z(4430) the Tetraquark


Scientists are always finding new particles or new phenomena that enlarge our existing pool of knowledge. And said pool has just become larger thanks, once again, to the LHC, which now says they have found a new type of matter.

Matter can be found in many forms, from solids in a macroscopic level, to protons, and even further down, to quarks. These last ones are the most primary building blocks in our universe. They make up protons and neutrons, which then form atoms, which then form elements and then everything we see nowadays.
But quarks don’t exist just by themselves. The come together in groups of two, called mesons, or in groups of three, which form protons and neutrons. But now, the LHC has supposedly found a new particle that consists of 4 quarks, forming a tetraquark. This mythical particle is being called Z(4430), due to the current naming system which says all ‘tetraquarks’ need to have names starting with a Z, for organisational purposes.

Z(4430)

Graph of results proving the existence of Z(4430)

Up until now, they had only been theorised, never actually proved, since the necessary calculations were far too complicated for even our most modern computers to attempt. But even then, this is not the first time a tetraquark has been presumably found. It has happened only once before, in the Belle Detector in Japan, where they also thought they had detected a tetraquark. In that case, other labs tried to find the particle, but since they were unable to do so, the particle’s existence was severely questioned.
The difference this time is that the LHC has detected Z(4430) for over 4000 times, in over 10 times the amount of data the Belle Detector had, undoubtedly proving this particle something worth studying.

There is, however, a slight problem with this particle. The basic theoretical models, (those that can be carried out without the use of complex computers), predict that tetraquarks should have a decay time of 10 times the decay time of Z(4430). This nagging little obstacle will have to be passed with more research into this particle, to finally unravel the mystery of whether this particle is just another mistake in the history of science, or if it is in fact one of the basic fragments of nature.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s