FrankenBattery


We live in a world where energy is currency. Wars are fought over petrol and other fossil fuels, whilst millions of people work tirelessly to provide alternatives like solar energy to prevent global warming and provide a greener and safer future for our planet.

Since energy is so important, a lot of research is put into it, yielding fascinating results. The most recent one has to do with lithium-sulfur batteries. Their mechanism is not new; in fact, it has been known for decades. But there have always been practical imperfections with their functioning. Scientists seem to have discovered a way to solve them and create one of the most useful batteries to date.

lithium sulfur battery

Lithium-sulfur cells coould soon power your phone, your computer, your car, etc…

Normally, this battery consists of two electrodes, one made of lithium and the other of a carbon-sulfur compound. When the battery works, ions from one electrode move to the other through the electrolyte, creating a current. Unfortunately, lithium can react with the sulfur and form lithium sulphides, which dissolve into the electrolyte and slowly use up the sulfur electrode. Up until now, the solution had been to add some other chemicals, like titanium oxide or manganese dioxide, which would stabilise the sulfur and prevent it from dissolving so easily in the electrolyte. But the method which seems the most promising is actually the most unexpected: adding DNA.

Yes, you read that right. DNA, deoxyribonucleic acid, the organic molecule that codes for all of our characteristics actually improves lithium-sulfur batteries. DNA is made of oxygen, nitrogen and phosphorus, and luckily for material scientists, all these elements easily bond with sulfur. This makes DNA ideal for trapping sulfides, preventing them from dissolving in the electrolyte. In turn, it improves the efficiency of these batteries by almost 3 times. Even better: DNA is cheap and biodegradable, and a very small amount is needed for it to improve the battery’s performance.

The interest in this specific type of batteries is not unjustified. They have a high energy density (can deliver up to 3 times as much energy as lithium ion cells), are cheaper to produce and greener for the environment. It is therefore not strange that scientists are trying to do as much work as possible to help improve this technology. However, the battery world is a slow one, and although an idea may look good in the lab, it is harder to extrapolate that into the industry. But keep your hopes up! Lithium-sulfur batteries could very well substitute the widely used lithium ion cells in only 15 years, with original ideas like the one exposed on this article to push it through.

Advertisements

Magnifying Eyes


It is a popular depiction of the futuristic world to show contact lenses that can display smartphone information: text messages, emails, phone calls… Don’t get too excited, this isn’t today’s news exactly. What has actually been created is a set of contact lenses that allow the user to zoom in and out of everyday life.

The gadget is basically a slightly larger contact lens that covers both your retina and the whites of the eye. It is also thicker and much more rigid than normal contacts, but can still be worn comfortably. In addition, it is covered with strips of aluminium mirror forming a circle, which cause light to be reflected many times within the lens, creating a magnification of 2.8 times. For the apparatus to work at its finest, it has to be joined to a pair of electronic glasses. When the subject winks with one eye, it activates the glasses, so they switch from normal mode to polarised mode. Then, they filter light so only light of one wavelength passes through (polarises) and focuses it on the telescopic area of the lens, which gives a zoomed in view. By winking with the other eye, the glass switches back to normal mode so there is no zoom.

At the moment, there have been no human trials due to the risk of harming the eye. The lenses are naturally thick, so it is difficult for air to pass through and keep the surface of the eye fresh and oxygenated. The newest model of this contact includes many little pores that allow air to pass, so the lenses can be worn for a longer period of time with a much lower risk.

contact lens zoom

These lenses were originally planned as a substitute for binoculars for soldiers

Designing these lenses was not only for entertainment or a cool technological device, but rather for medical purposes. These zooming contact lenses can help people with limited visibility, like those with macular degeneration, a disease which affects muscles in the retina. They offer a much easier and practical alternative than surgery or special, expensive glasses.

Mom, Dad and the Mitochondrial Donor


They say three is a party. But in this case, three parents may be just enough parents to save future babies from suffering a crippling disease for the rest of their lives.

We are talking about the mitochondrial replacement procedure. Found in the cytoplasm of a cell, mitochondria are powerhouses which supply it with energy to function and survive. However, they are not perfect organelles, and may sometimes have mutations which cause disease. Unfortunately, this can be passed on to children, since when fertilisation occurs, it uses the mother’s egg cell as the starter cell, and so all of her mitochondria, meaning that any subsequent cells that form from that zygote will carry the mother’s defective mitochondria.

zygote

A human zygote, which would contain a nucleus with genes from the mother and the father, and mitochondria from a donor

To prevent this, scientists have designed a new process, called mitochondrial replacement, to be carried out on women with mitochondrial diseases, allowing them to have children and prevent these from also suffering from the disease. It is done by a form of In Vitro Fertilisation. An egg cell from the mother and a sperm cell from the father are taken, like in normal IVF. The change comes when we add another egg cell, this time from a different woman (a donor). The nucleus of the mother’s egg cell is taken and it replaces the nucleus from the donor egg cell. The sperm is then allowed to fertilise the new egg cell and a zygote is formed which can then be implanted onto the mother and allowed to grow into a healthy baby. This way, the zygote will develop from a cell which contains the mother’s genes, but none of her mitochondria, so the baby is safe.

Messing around with zygotes is never child’s play, and always carries some controversy. In this case, it is due to the questionable effects of adding a third group of genes to a person. Since mitochondria are essential for life, having them come from a different source than the rest of the genome could have unpredictable consequences.

Despite some uncertainty, the UK government has approved this measure, saying there is no real proof it is unsafe. Rest assured, there will be plenty of human trials before it becomes a standard procedure, but at least it’s a brave step towards helping people suffering from these diseases improve their lives.

Fossils on the Moon


the moon

The answer to the origin of life on Earth may actually not be on Earth

Although the Universe is 13.8 billion years old, life took a lot longer to develop. Estimates say that life ‘happened’ up to 17 million years ago somewhere in the Universe, but only spread through the Earth 3 million years ago. There are various theories as to how life developed on Earth specifically. Some think that the random collisions of molecules that give rise to life happened independently on Earth, since it had favourable conditions. Others think that this may have occurred someplace else, deep in the vastness of space, and that those small living creatures were transported to Earth via a meteorite.

At the moment, there is no way to confirm which of these theories is correct. It was thought that analysing fossil records could show whether any meteorite that arrived at the time life started actually contained living organisms. But Earth is an active planet, and its continuous geological activity has pretty much erased all evidence of it. But scientists have thought of an alternative.

If 17 million years ago there were meteorites containing life roaming around the universe colliding with planets like the Earth, they could have hit the Moon, since they are so close together. And the great thing about this possibility is that it is actually verifiable. The Moon has a much calmer tectonic history, since it currently does not contain any lava in its center to wreck fossil records. But at the time life is thought to have spread on Earth, the Moon was covered in lava, which is more helpful than you imagine. Several experiments in the past have shown that complex organic molecules that made up early life are able to withstand the high temperatures in the lava, and may have actually been protected from radiation by being buried deep inside the hot liquid.

So now we only need to go on a mining expedition to the Moon to find any fossils that may give us the next clue as to when and how life started in this wonderful Solar System of ours.