Tree of 40 Fruits

I’m sure we’ve all seen a tree or two at some point in our lives, sometimes carrying fruit, but never a single tree with branches full of 40 different varieties of fruit.

This truly innovating project was actually led not by a scientist, but by an artist. His name is Sam Van Aken, and he is an art professor at Syracuse University in New York who some years ago planned to create a tree where each branch produced a different fruit, so that in spring, every branch would bloom into a different colour, but all in shades of pink, white and red.

tree 40 fruit

A CGI image of what the tree will look like in spring

To accomplish this gardening feat, he used a technique called chip grafting. It consists of cutting a fragment of a flowering tree that gives one type fruit (including the bud), and adding that onto a previously-made cut on the ‘master tree’ (the original tree that will hold all the different fruits). Then, it is held together with tape and left during the winter so the two parts join.

And so step by step, the tree became larger, and every year it had the ability to produce more and more fruits until, after 9 years, it could make up to 40 types. This project has been carried out for quite some time, so now, in total, there are 16 of these hybrid trees, each with a different combination of fruits. However, they all produce variations of stone fruits, like apricots, cherries, plums and peaches because they are easily compatible. To find these trees, you should look all over the US, in museums and community centres, or if you’ve got enough money to spend on this, you can even buy your own for around $30,000.

The idea originally was just to create beautiful trees as a work of art, but as Van Aken was collecting different varieties of fruits to add to his trees, he discovered a growing problem: a lower variety of species had become available, and only a few were being grown at an industrial scale. The less-common varieties were not being used because they were not as good for selling: the colour may not be as appealing, the size may be too small or too large, or the may last very little time on the shelf. This meant that some of the native, antique species were being lost, which worried the artist and made him change the focus of the project onto conservation. So now, not only do his trees carry some of these rarer species so they are still around, but he’s also spending the money he earns from the ‘Trees of 40 Fruits’ into creating an orchard collecting all the different varieties of stone fruit, especially the uncommon ones, so they are still go and people can even go and have a taste!

Meeting Pluto (The Planet)

NASA made history this week, once again, when the project New Horizons, launched 9 years ago, reached the ‘ex-planet’ Pluto and its surrounding moons. Ever since it has arrived, it’s been sending us information from there, and putting it lightly, it has been a rollercoaster of emotions.

Scientists previously believed Pluto to be a calm, inactive dwarf planet; just a mass of ice and frozen gases floating around the Solar System. But defying all these expectations, Pluto seems to be very geologically active, actually similar to Earth, (or rather, one of Neptune’s moons, since it has a large ice mantle).

The clues that point to this surprising conclusion are many. For one, there are areas with no signs of craters caused by asteroid collisions, which would be impossible unless these sections are relatively new, as they would be if they had been formed recently by geological activity. There are also fault lines and rift valleys, both characteristic features of tectonic movement.

However, scientists are still puzzled as to how these movements are brought about. In Earth, tectonic movements happen because of the melted rock in the core of the planet, but this is not possible in Pluto, so a popular theory suggests that since it is filled with radioactive material (like most astronomical bodies), this somehow produces enough energy to heat up the surface of Pluto and causes the movement of large amounts of ice that act as tectonic plates.

But don’t think this trend of unexpectedness stops at Pluto. Its largest moon, Charon, is not far behind. It also displays signs of being geologically active, as it has deep canyons and very smooth expanses.


Pluto sure is a sweetheart

Since many new areas in Pluto and Charon have been true wonders, scientists have decided to give them appropriate names. The most famous one, unofficially nicknamed ‘The Heart’ because it is heart-shaped, is now probably going to be known as Tombaugh Regio in honour of Clyde Tombaugh, the discoverer of Pluto in 1930. Another feature is a plane made of ice, which shows troughs at regular intervals, and has been dubbed the Sputnik Planum, in honour of the first spaceship. The Norgay Mountains are named after the first Sherpa to climb Mount Everest, and are a range of 3300 meter-high mountains made entirely of frozen ice which behaves like rocks. Astronomers also seem to be huge fans of the Lord of the Rings trilogy, as they have named a feature in Pluto ‘Balrog’, a monster from this series, and a dark region in the pole of Charon is being called Mordor.

The mission also offered an opportunity to accurately measure Pluto’s diameter for the first time. The results show that it is 2.370 km large, possibly the largest of the five recognized dwarf planets in the Solar System.

Although the official flyby has ended, New Horizons’ adventures are not over. All this baffling information it has sent us only represents about 2% of all the data it has collected, so we can still expect many surprises from this mission for about 16 months as the rest comes in. And after the visit to Pluto, it is going to fly to the Kuiper Belt, a zone beyond the planets full of small icy bodies that may contain some interesting information as to how the Solar System was formed.

Super Brain Network

Although it may seem directly taken from a science fiction movie, scientists at Duke University have actually managed to connect the brains of several organisms so that without any real communication they have been able to work together to carry out tasks.

In a series of experiments, researchers opened the skull of both monkeys and rats and using electrodes and wires, linked members of the same species together so that, even if they could not share complex thoughts or emotions, they could synchronise their neural activity.

When doing some experiments on rats, the connection was investigated by having one of the animals undergo an electrical stimulus, so its brain activity increased. The other rats, despite not being stimulated directly, automatically changed their neural activity to match that of the first rat, so it looked like they too had received the stimulus, and felt its effects.

But not only does this connection make them more ‘empathic’, it also makes them more intelligent. When scientists sent temperature and atmospheric pressure information into their brains, coded by electrical impulses, the rats could put all the information they had received together and solve problems regarding the chance of rainfall. They could do this by themselves, without any linking, but the brain network helped them obtain better scores.


Linking brains is no longer a science fiction movie plot

With monkeys, three of them were connected through the motor region of their brains, after being trained individually to control a virtual arm with thoughts alone. Once they were connected, each was able to control only certain aspects of the arm’s movement, like only being able to move the arm horizontally and vertically, and even those abilities it had to share with another monkey, so that each had an equal contribution to the movement in that direction. However, as messy as this sounds, they synchronised and managed to work with each together, combining their skills to control the arm and grab an imaginary ball displayed on the computer.

The applications for this are not to make a huge human population brain network, where we can share our thoughts and emotions, as not only are they too complex for it to be possible to share them this way, but it would also be unethical and have privacy issues. However, it can be used in people who have had some damage to their brain. For example, someone who has suffered from a stroke and can no longer talk normally can be connected to a healthy person, so said area synchronises with the healthy area and accelerates the healing process.

The Moon Is Keeping You Awake

You may have heard people justify a bad night of sleep because ‘it was a full moon’, and immediately dismissed it as a myth. Well, think again.

The moon affecting our sleep is not as weird and irrational as it sounds. In fact, it’s not even unheard of in the animal kingdom, as this is known to happen in many other organisms, from small worms to large marine animals, and can not only affect their sleep, but also their reproductive cycles. It even has its own name: the circalunar rhythm.


Now you know who to blame for a lack of rest

But to see if it could happen in humans too, a group of researchers from University of Basel, Switzerland, followed a group of patients who, like normal human beings, fell asleep every night, and every time gave the scientists their opinion on how well it went. Most agreed that on the day of or close to full moon, the sleep quality was lower and they felt less rested. But this could be a subjective or biased opinion by the patients. So the scientists backed this up with the most undeniable proof of all: science.

They measured the hormone levels, brain activity and any eye movements before, during and after falling asleep. In case you’re confused about why bother measuring eye movement; it is because during REM phase, where we actually ‘rest’, our eyes subconsciously move around (in fact, REM phase stands for Rapid Eye Movement phase). After conducting this research at different times of the month, and therefore at different stages in the moon cycle, what they found only supported what the people had said themselves: there was a decrease, of up to 30%, in the people’s brain patterns during sleep. Not only was the quality worse, but it was also shorter, as they took 5 more minutes to become unconscious and in total were deprived of almost 20 minutes of blissful sleep.

This could’ve all been due to a decrease in the levels of melatonin, a very interesting hormone which can be found in animals that somewhat ‘predicts’ when it is going to get dark and prepares us for sleep, so a lack of it could lead to us not sleeping as deeply.

But researchers don’t know how the moon can even affect the amount of this hormone in our body and can end up causing the other symptoms. It’s not the presence of moonlight, as this was eliminated by keeping the test subjects in closed rooms. So this leaves the two most plausible ideas being either that the moon’s gravity somehow manages to affects us even though it is extremely weak at such a large distance, or that humans have a physiological clock inside of them which keeps track of the moon cycles. Although this may sound just bizarre, it already exists; but instead of with the moon, it uses the Sun. You may have heard of it: it’s called the circadian rhythm and it has a great effect on us as thanks to it, our body knows how to behave at the different times of the day.

The test was only done on 33 people, quite a small sample regardless of how standardised the whole procedure was. So in future investigations, larger groups of people should be investigated to not only support these scientists’ hypothesis, but maybe to even find out the mechanism by which the moon manages to ruin a good night’s sleep.

Boosting Spiders

Arachnophobia, the fear of spiders, is one of the most common fears, affecting slightly less than 50% of women and 15% men. But regardless of how scary they can be, spiders are fascinating creatures, and you can’t deny their skill. They can spin the second toughest natural material in this planet: spider silk.

Spider silk can be found in spider webs, which are made by quite the process. It is called ballooning, a hilariously weird name that describes the method by which spiders release silk strings into the air so the wind carries them away, until they attach to a surface. Step by step, fibres criss-cross until a web is formed.

You may have already met this creation when cleaning your old, dusty attic or from running face first into them in the woods, but what many people don’t know is that its strength is, in proportion, comparable to that of steel. However, it may not seem as strong because it is much thinner and less dense.

But let’s not get too caught up in spiders and their ways of life. Although their silk can boast of incredible characteristics, we as humans always insist on pushing harder and trying to improve what we see. In this case, this lead to scientists to add a man-made touch into the mix to toughen up silk.

Two groups of spiders, both from the species Pholcidae, were kept in different environments. One group was sprayed with water and graphene molecules dissolved in it whereas the others got water with carbon nanotubes. Then, in a mechanism still unknown to the researchers, the spiders were able to use the carbon compounds in the solutions to make stronger silk. This could’ve happened because they drank the water and the graphene and carbon nanotubes ended up in the silk-producing areas of their bodies or more simply, because the silk ended up covered in the solution and the compounds coated it.

spider web

Let’s hope the toughened up spiders don’t rebel against us

That is what the team of researchers will be investigating further, but for now, they are basking in the glory of being able to produce the strongest fibre ever: an artificial silk between 3.5 and 6 times stronger than the natural version. In perspective, this means the silk produced by these buffed up spiders is just as strong as Kevlar, the material used in bulletproof vests.

Who knows where this coalition between spiders and humans could go next. One idea is to repeat the process with other animals, like silkworms, which also produce their own type of silk. Before though, they need to know how we could actually use this type of silk, whether in sutures and clothes or in the craziest idea yet: creating huge silk nets strong enough to catch and hold falling airplanes.

Evil Twin’s Downfall

So what if we have an evil twin, like in the movies? If he/she commits a murder, and DNA evidence is found in the crime scene, both you and your evil twin will be suspects, since you share the same genetic material. Although this is a rare and unlikely scenario, it is definitely a possibility, and has actually happened several times throughout the years.

Usually, this will end in no one being prosecuted, since it would be impossible to determine which twin did it, and sending both to jail would be terribly unfair to the innocent sibling. A new option for the police in these cases is to analyse the DNA of both twins in incredible detail, searching for any slight variations that may have randomly occurred due to mutations and changed the genetic code, but this option takes a lot of time (over a month) and also happens to be very costly.


Now we can find out which twin actually did it

However, scientists have now come up with a sort of an upgrade to this method. Instead of looking for mutations, which occur randomly, they would look for differences in the DNA strands that have been caused by their way of life. These modifications are called epigenetic changes, and instead of causing a gene to change its sequence of bases, it just modifies how it is expressed into a protein. It can do this by adding a methyl group (-CH3) or by altering the histones in our DNA: the proteins that help condense our genetic information into a more compact shape so it can all fit into the nucleus of a cell.

These changes can be inherited, which would be unhelpful since both twins can have them, or caused by environmental factors, which would also be unhelpful if the twins have lived close together in the same conditions. Fortunately, very small differences can cause these changes, specifically in the early stages of the embryo’s development, so although still rare, these changes do exist in twins.

In the specific case of epigenetic changes by methylation, this would mean that the DNA strand is now larger, and has more molecules in it. This would increase the forces of attraction and increase its melting point. Since both twins will have different changes, and therefore different amounts of methyl groups, their DNA would not melt at the same temperature. So comparing their DNA’s melting temperature with that of the DNA found in the crime scene can tell the police which of the two twins did it, and solve the mystery in a much faster and cheaper process, as you only have to heat the suspects’ sample.

The 6th Sense

We are used to people talking about the 5 senses: sound, sight, touch, smell and taste. But scientists are now working on improving these, and even creating a new sense that would enable us to experience the world in a much more heightened way.

For now, it’s all based on an experiment to help blind mice. Since this type of mice isn’t able to see, their sense of direction is severely handicapped. But in the University of Tokyo, a team used a compass like those found in smart phones, albeit a more complex version, and inserted it into the visual cortex of blind mice. It had two electrodes attached, each connected to a hemisphere of the brain. They fired up, sending electric impulses to the brain, whenever the mice’s head turned a certain amount of degrees away from the north direction. Depending on how many degrees, it would change the intensity of the signal on each hemisphere, so for example, when the mouse faced south, the neuroprosthesis would only send an impulse to the left hemisphere. After a week, the mouse managed to interpret these signals correctly and was able to orient itself using this compass, instead of the usual vision.

mouse compass

These mice have a compass in their brain, which helps them overcome their blindness

This was demonstrated by putting the mice in a labyrinth with a prize in the middle, and comparing normal mice, blind mice, and blind mice with the compass. After about 60 rounds of labyrinth trials, the normal mice and those with the compass behaved practically the same, finding the prize in a small amount of time, whereas the blind mice took longer. It seemed like the mice were able to create a map of the labyrinth in their heads, so no matter where they were placed within the maze, they managed to find their way around. Although this did not actually cure the blindness, it enabled them to find their sense of direction and be more independent.

What’s especially interesting is not only that the rats were actually able to ‘see’, but that they could detect this foreign type of stimuli and understand and interpret it correctly. Even though they spent their lives without a compass in their head, as soon as it started working they were able to use it to their advantage, showing the great adaptability of these organisms. This could be extrapolated to use in human beings, and gives hope for a cure/alternative to blindness. Other scientists go further and suggest that it could open a path towards new types of senses, using stimuli like UV or infra red light that, together with receptors like this compass, we could use to see the world in much more complex ways, adding more senses to the pre-existent ones.

Ancient Antibiotic Antidote

Despite the absolutely mind-blowing scientific developments we have witnessed in the last few decades, it seems like our ancestors still have the upper hand, as a 1000-year-old recipe for a treatment is effective against our worst medical nightmare: superbugs.

Bald’s Leechbook

If you can read Old English, this page from the Bald’s Leechbook will give you the recipe to fight the almighty MRSA

The instructions for said cure, found in the “Bald’s Leechbook” manuscript (written in the 9th Century), called for mixing garlic, leeks, wine, and bile from a cow’s stomach in a brass container, so that’s what scientists in Nottingham University, curious about the effectiveness of this old-fashioned procedure, prepared. There was one slight exception: brass containers are costly and difficult to keep bacteria-free, so instead they used a glass bottle and inserted brass sheets into the mixture hoping it would have the same effect. It was left for nine days to sit, producing a dominant garlic scent which filled the lab. But proof did eventually start to show that demonstrated this was more than child’s play: the bacteria that had been added through the soil in the garlic and the leek had been killed, meaning the solution was actually sterilising itself.

Originally, the concoction was thought out to treat styes (eyelash infections) which are caused by Staphylococcus aureus bacteria, supposedly working perfectly fine. But the reconstruction has now been tested on Methicillin-Resistant Staphylococcus aureus; the older, tougher sibling of the original bacteria and the mixture can still hold its ground. In an experiment using pieces of skin from infected mice, the centuries-old mixture cleared 90% of the MRSA infection; just as much as the standard modern antibiotic used for this type of bacteria.

What’s interesting to note is that only the mixture of all these compounds actually caused an effect on the bacteria. The scientists conducting this research carried out several repeats, each time changing the variables by using only one of the ingredients in a brass-containing water solution. By themselves, they were useless against MRSA, which was to expect because even though they all have some antimicrobial properties, this type of superbug is one of the hardest to kill. But when they were brewed together, they were able to almost completely massacre the culture. Although an explanation for why only their combined effects works is still missing, the frenzy of this wild event has caught many scientists from all around the world’s attention, and many experiments are currently being conducted in hopes of finding out the mechanism behind this ‘magical’ preparation.

This event just goes to show that although we may see most past scientists as delirious people who though the Earth was flat and there were only 5 elements, they still had some very promising ideas which should be remembered.

A great video on the matter you should watch if you’re interested is:

(Special thanks to reader pcawdron for sharing it)

Precious Faeces

Treasure hunters spend their lives looking for valuable objects like gold coins and silver ornaments in shipwrecks or archaeological sites, often involving dangerous stunts. But tonnes of precious metals are actually hiding in plain site, right where you wouldn’t expect them: in your faeces.

gold stuff

Who knows where this gold actually came from…

Many products we use in our day-to-day life, like shampoos and detergents, contain precious metals, which gather up in urban pipes. Or they can be found in the food and drink we consume and that, after a while, accumulates in our body until is removed by excretion, which also ends up in the sewage drains. So imagine if this process was carried out by thousands of people, all living together in a city. The amount of valuable elements in the sewage would be outstanding! And so has been confirmed in a study by the US Geological Survey that found out that the concentration of precious metals in a city’s sewage system is comparable to that in an actual working mine.

For example, in a single kilogram of ‘sewage slime’, you can find 0.4mg of gold and 28mg of silver, metals used in jewellery; 638mg of copper, a metal used in electrical wiring and 49mg of vanadium, which has important industrial applications. But in the larger scale of a whole city, it has been calculated that by all these metals being thrown into the sewers, up to £510 million a year are being lost in the UK.

In an attempt to profit from this waste, companies are starting to consider human faeces as a viable source of precious metals. It’d be quite a profitable venture for them, and much greener than traditional mining since instead of using hazardous chemicals in lands where they can contaminate a habitat, they are used in an enclosed factory. And although working with faeces sounds like an outrageous idea and a bad time, it has been done for many years now, as it is used to make plant fertilizers.

As a fortunate side effect, we would actually be making our excrements cleaner and therefore protecting the environment. Faeces not only contain gold and silver, but heavier metals like lead which can be toxic to an ecosystem. By processing our waste, we’d make sure that not only the valuable metals are removed, but the harmful ones too. This idea just gets better and better!

So who knows, maybe someday in the near future you will wear gold bracelets that come from your faeces, or phones with microchips made of components of our waste.

A Chameleon’s Colourful Secret

Chameleons are definitely one of the most fascinating creatures on Earth, and their characteristic colour changes, to camouflage themselves or gain the attention of their mates, can impress both kids and adults alike. As if their ability to change their appearance into anything they’d like wasn’t enough, the mechanism by which they do so could also be unique and worth some credit.

In nature, colours are usually produced by pigments: substances that have a specific colour. For example, our skin gets tan because of a pigment called melanin which darkens it. In chameleons, it was originally thought that they showed one colour because a pigment of that same colour covered their skin, and when they wanted to change colour, a pigment of a new colour just substituted the original one. But it has now been discovered that their colour change, contrary to popular belief, had nothing to do with pigments. It’s actually all because of crystals.

A chameleon’s skin has an outer layer full of specialised cells called superficial iridophores, which have tiny guanine crystals embedded that can reflect light at different wavelengths and so produce different colours. Guanine not only plays an important role for this process, but is also one of the four bases in our DNA, which code for all the substances in our body. When the chameleon wants to change colour, it simply twist these cells around so the distance between crystals changes, which causes the reflection pattern, and subsequently the colour it produces, to change.

chameleon coloured

Chameleon’s can express a wide variety of colours thanks to guanine crystals

This is a very smart design which saves the chameleons a lot of energy and resources on producing and transporting the pigments around. If the animal wants a bluish colour, it just needs to push all these crystals together. For a reddish/yellow colour, just spread them out.

The only thing yet to be discovered is how the chameleons actually modify the superficial iridophores’ shape. In the experiment they carried out to test this new theory, they used salt water to expand and contract the cells and see what effect this had on the colour. But the natural process in chameleons is not necessarily chemical, it could be mechanical. Finding out which one it is is the team from the University of Geneva’s new objective.

Either way, discovering the truth behind this ingenious technique is not only an interesting fact to know about, but could also have real-life applications, for example, in developing computer screens.