Cystic Hallelujah

Cystic Fibrosis is an inherited genetic condition, where specialised cells called epithelial cells, found in the lining of vessels (like the lungs, the intestines, the reproductive ducts…) do not function correctly. Normally, they would produce mucus, a slimy substance that reduces friction and allows substances to pass through the tracts more easily, but when suffering from Cystic Fibrosis, the mucus becomes less runny, so it is not as efficient at lubricating.

The most common treatment is physiotherapy, where an expert massages the chest area to help move the mucus along. This is an important area to do so, since if the mucus in the lungs gets stuck, it could house bacterial infections and cause trouble breathing. But as much as this may help, it still doesn’t cure CF, so infected people may still die quite young (around 40 years old).

A possible solution which has been considered for over a quarter of a century, since the single gene responsible for causing CF had been identified, has been gene therapy. This technique consists of introducing a healthy version of the gene into the cells of an infected person, and using it to replace the mutated version. However, there are several complications involved, and it has never been fully possible to carry this out and obtain good results. But not anymore.


A liposome is a phospholipid bilayer, which can fuse with cell membranes and release the gene it contains

In a new study carried out on 116 infected people, half received a gene therapy treatment, and half received a placebo. The treatment was a solution of liposomes that carried the desired gene inside them, and which the participants had to inhale so it could easily reach the lung cells. Although both were administered for 9 months, their effects were measured until after 12 months, and to do so researchers in charge measured the volume of air participants would breathe in and out in a set period of time. The results didn’t disappoint. People treated with gene therapy not only saw a stabilisation in their lung performance, instead of the disease’s characteristic downfall, but also had 3.7% better breathing capability than those people who had been given a placebo.

Although it may not sound like an impressive feat, it certainly is. Consider this is only the first time this has ever actually worked, and that it was a scaled down version of the treatment. The dose could definitely be increased so the effects are much greater. And even if the change seems small, it could postpone the need for lung transplants for decades.

Equalitarian Blood

Blood flows around the body all the time, yet we barely see it unless we suffer from an accident. If this were the case, and we lost too much of it, we’d need a blood transfusion. But it is not as easy as just putting blood from one individual into another: you need to test it and make sure the blood is compatible.


Can you guess what antigens these red blood cells have?

This occurs because human blood can be divided into many categories. The most common one is the ABO group classification, which divides blood into four types: A, B, AB and O. In each, red blood cells (those cells specialised in carrying oxygen around the body) have a specific antigen depending on the blood type. For example, if you have group A blood, you will have A antigens; if you have AB blood, you will have A and B antigens; and most importantly, if you have O blood, you will have no antigens.

Each antigen stimulates a response from our immune system to produces antibodies against the other antigens. So if you have blood group A, you will produce antibodies that will destroy cells with antigen B, and vice versa. This is potentially very dangerous, because if you give someone of type A blood from a person of type B, the antibodies can attack each other’s red blood cells and wreck havoc in our bodies.

When it comes to transfusing blood, the best one is group O- since it has no antigens, so there is no way your body can attack it. That is why we call it universal, since it works for anyone, no matter their blood type. This makes it very sought after for blood transfusions, but there isn’t always plenty of it available.

But what if we could convert all blood into O type blood? We can’t change the genotype of adults so that their body produced it, but we can change the blood itself after the blood has been donated. The most successful way to do this would be to insert bacterial enzymes into the blood which can recognise antigens in the red blood cells and cut them off so they are just like red blood cells from O group blood.

In the experiment which created this mechanism, the original enzyme worked mostly with cells from group B only, so to make it effective on cells from group A too they used a very interesting method called directed evolution. It’s just as it sounds: they grew the bacteria that produce this type of enzyme, and slowly mutated their genome (by adding bases to their DNA) so that every generation produced a better enzyme. At the end of the experiment, after 5 generations of bacteria, the final enzyme was produced, which not only could severe A antigens, but was also an impressive 170 times more efficient than the original one.

Yet this method is still not perfect: the enzyme can’t modify all the thousands of red blood cells in a sample of blood and therefore can’t make it completely safe, as there will still be some red blood cells with antigens present. But with enough time, the scientists hope to perfect it and make the technique available so blood transfusions are easier to carry out.

Balding Irony

Baldness affects many people (mostly men) at some point in their lives and a lot of research has been carried out to learn how to prevent it. The secret to doing so might be the most ironic treatment ever: to prevent going bald, pluck your hair.

The science of hair growth is more fascinating than it may seem at first sight. Hairs actually go through cycles: first they grow thanks to the stem cells in the follicle (the anagen phase), then they stop growing (the rest phase), and lastly the hair falls out. But if you manually remove the hair at any of these phases, an interesting process is triggered. The follicle will release cytokines, specifically the CCL2 type, which is a chemical that attracts white blood cells. When these cells arrive, they also release their own set of chemicals that stimulate stem cells so they start producing hair again. However, what’s the point of plucking one hair so that it grows if you already have it?

Well, there’s a trick. Scientists at University of Southern California, Los Angeles, did some experiments with mice where they removed a handful of hair on a specific area of the mouse’s body, and to their surprise, found that not only did the patch of hair grow back, but also stimulated growth in others areas. The catch is that this only happened if a certain amount of hair was removed: there was a threshold for the amount of hair that needed to be pulled out for others to be stimulated.

bald head

Should’ve plucked his hair more often!

This is because the CCL2 signal from one follicle isn’t very large; you need CCL2 to build up so the effects are much stronger and can affect a larger area of the skin. In the specific experiment they carried out, the lowest number of hairs that had to be removed was of 200, which lead to the growth of 1200 hairs. The way these hairs can communicate with each other by accumulation of chemical signals is called ‘quorum sensing’, and it causes the hairs to act like a collective group, as if taking decisions together.

Although the study was carried out on mice, the researchers don’t rule out the fact that it could somehow be used in humans, although some modification may be necessary. It also shows the increasing complexity of the immune system, and possibly sheds some light as to how the mechanism of regeneration is controlled.

Ancient Antibiotic Antidote

Despite the absolutely mind-blowing scientific developments we have witnessed in the last few decades, it seems like our ancestors still have the upper hand, as a 1000-year-old recipe for a treatment is effective against our worst medical nightmare: superbugs.

Bald’s Leechbook

If you can read Old English, this page from the Bald’s Leechbook will give you the recipe to fight the almighty MRSA

The instructions for said cure, found in the “Bald’s Leechbook” manuscript (written in the 9th Century), called for mixing garlic, leeks, wine, and bile from a cow’s stomach in a brass container, so that’s what scientists in Nottingham University, curious about the effectiveness of this old-fashioned procedure, prepared. There was one slight exception: brass containers are costly and difficult to keep bacteria-free, so instead they used a glass bottle and inserted brass sheets into the mixture hoping it would have the same effect. It was left for nine days to sit, producing a dominant garlic scent which filled the lab. But proof did eventually start to show that demonstrated this was more than child’s play: the bacteria that had been added through the soil in the garlic and the leek had been killed, meaning the solution was actually sterilising itself.

Originally, the concoction was thought out to treat styes (eyelash infections) which are caused by Staphylococcus aureus bacteria, supposedly working perfectly fine. But the reconstruction has now been tested on Methicillin-Resistant Staphylococcus aureus; the older, tougher sibling of the original bacteria and the mixture can still hold its ground. In an experiment using pieces of skin from infected mice, the centuries-old mixture cleared 90% of the MRSA infection; just as much as the standard modern antibiotic used for this type of bacteria.

What’s interesting to note is that only the mixture of all these compounds actually caused an effect on the bacteria. The scientists conducting this research carried out several repeats, each time changing the variables by using only one of the ingredients in a brass-containing water solution. By themselves, they were useless against MRSA, which was to expect because even though they all have some antimicrobial properties, this type of superbug is one of the hardest to kill. But when they were brewed together, they were able to almost completely massacre the culture. Although an explanation for why only their combined effects works is still missing, the frenzy of this wild event has caught many scientists from all around the world’s attention, and many experiments are currently being conducted in hopes of finding out the mechanism behind this ‘magical’ preparation.

This event just goes to show that although we may see most past scientists as delirious people who though the Earth was flat and there were only 5 elements, they still had some very promising ideas which should be remembered.

A great video on the matter you should watch if you’re interested is:

(Special thanks to reader pcawdron for sharing it)

Prophetic Neurones

Being able to tell the future is a superpower that we have all wanted at some point or another in our life. And although it seems like science-fiction material, we actually do have this ability. Granted, it is not as accurate or far-reaching as we would like, but it is still quite impressive and useful at a smaller scale.

In our everyday lives, we often encounter situations where we need to predict what other people are going to do. These can range from normal conversations to arguments, or even playing games. It is precisely this last scenario which can be used to investigate how exactly we are able to foretell other people’s actions.

The game in particular is called Prisoner’s Dilemma, and the experiment consists of having monkeys play this game and examine any patterns in their actions. In this game, two people face each other with two options: either cooperate or refuse to work together. Every different combination of choices yields different results. For example, if one declines and the other cooperates, the one that declines gets a great reward, whereas the other doesn’t. If both cooperate, they both get a smaller reward. If both refuse to work together, they get the smallest prize. So to win the most in this game you have to be good at predicting what your opponent will do and acting accordingly.

A team at Harvard Medical School made monkeys play this game hundreds of times, but did it so that each time the monkeys could see what their companion had chosen. This way, they could base their decision for the next turn on what the opponent had done and predict how they could get the greatest reward.

anterior cingulate

Highlighted in yelllow is the anterior cingulate, where these ‘clairvoyant’ neurones are found

At the same time, their brains were monitored. Specifically, an area called the anterior cingulate, which has been shown to be involved in the decision making process. The results showed that some neurones in this area acted according to a pattern, depending on the decisions the monkeys took. But to make the results more reliable and make sure these cells were responsible, they used some exterior electrical impulses to inhibit them and prevent them from working correctly. By doing this, the monkeys became more selfish and refused to cooperate more often, even though tactically it made no sense, as it would result in a lower prize. Since confusing these neurones caused the monkeys to make different choices, especially involving disconnection from their partner and a lack of prediction of their movements, it is safe to say that the specific group of cells in the anterior cingulate have an effect on foretelling the future.

Although this theory has only been tested in monkeys, the process in humans is thought to work in a similar way, and studying it can help study social interactions between humans, in light of diseases such as autism.

Antibiotic Hero

Antibiotics are the real wonder drug. They were a revolution in the 20th century, capable of fighting the most powerful bacterial infections. Scientists understood their potential and worked tirelessly to create a wide variety of them to harness their power, but eventually they stopped. Since the 1980s, no new antibiotic has been discovered. Since we have a great amount of them, it wouldn’t be too big of an issue, if it weren’t for a growing problem: resistance.

Due to the threat antibiotics represent to bacteria, these organisms feel a high selection pressure to evolve and develop new ways to defend themselves from these drugs. And they have succeeded. Many strains of bacteria, especially for diseases like MRSA and TB, have become immune to many antibiotics and are proving really hard to fight. Due to the increase in antibiotic resistance, there has been a hunt for new antibiotics in the recent years, and it has finally paid off.

The most common way to obtain an antibiotic is from bacteria themselves. We are not the only ones who want to get rid of them; competing bacteria do too. So when these bacteria develop chemicals to destroy other bacteria, we need to extract them and use them to our advantage. But to extract the chemicals, bacteria need to be cultured in the lab, which can be difficult at time, since the most used bacteria for this process are found in the soil, which has conditions difficult to recreate in the lab. A new method created by researchers in Boston could solve this: it consists of creating a culture with three layers: two layers of soil on either side of a semi permeable membrane. These are perfect conditions for bacteria and have made it possible for thousands of them to grow and for a possible new antibiotic to be isolated.


Teixobactin could fight TB and other diseases which, over the years, have become immune to our medications

 It’s called teixobactin, and it targets proteins on the membrane of bacteria, eventually killing them. Because of its complicated mechanism, it is very hard for bacteria to develop resistance to its action. However, it is not impossible. Scientists predict that if used correctly (that is, without overprescribing), teixobactin could be effective for over 30 years, quite a long lifespan for an antibiotic. As it is completely new and bacteria have never been exposed to it, many say it could be the key to fight multidrug resistant bacteria, fighting superbugs and giving us and edge over the most fierce and dangerous infections. These hopeful results have yet to be confirmed in human trials, but the effectiveness of the new antibiotic seems to be as good as it sounds in animal tests.

 With this new method and this new antibiotic, the future of medicine could prosper, and bacterial infection could remain an enemy we can defeat.

Smoking Out Y

When people smoke, not only do they inhale burnt pieces of paper which damage their lungs, or have tar accumulate inside of them, which is likely to cause lung cancer, or inject nicotine into their bloodstream, which increases heart rate and blood pressure; it also causes the Y chromosome to eventually disappear. Of course, this only affects males, since the presence of a Y chromosome determines you’re male in gender, but for women smoking is still unhealthy and should be stopped.

Chemicals in tobacco affect this chromosome during cell division or mitosis when the chromosomes are being separated to either sides of the cell. Damage to the chromosome can build up until it eventually disappears. The study, carried out in Sweden, showed that people (men, specifically) who smoked had 33% more chances of loosing their Y chromosome compared to men who didn’t smoke.

However, it has been widely thought for many years that the Y chromosome is so small (in fact, it’s the smallest out of our 46 chromosomes), that its loss wouldn’t have too dire consequences. Past experiments on cells show that they can survive just as well without said chromosome. But new studies show that the lack of this chromosome, although not directly fatal, can shorten life duration and causes an increase in the likelihood of developing cancer. Lung cancer or any other cancer having to do with the respiratory system aside, male smokers are twice as likely to develop cancer as female smokers.

A possible explanation for this is that the Y chromosome contains tumour suppressing genes, so if it disappears, tumours are not going to be controlled and inhibited and therefore will be able to reproduce uncontrollably, causing cancer.

The newest research shows that this effect changes intensity depending on the dose of tobacco smoked. Obviously, the more tobacco you smoke, the more likely you are to suffer from its negative effects. But there’s a silver lining: this process is reversible. If you were to stop smoking, your cells would stop taking damage and after some time they’d be repaired, so you would have the same percentage of healthy cells with a Y chromosome as a non-smoker.

y chromosome

The Y chromosome is more important than you think in the fight against cancer


Paralysis Cured By A Nose

Paralysis is a terrible condition suffered by over 3 million people, but can actually affect anyone and has very few solutions. In an almost miraculous turn of events, this has now changed thanks to scientists, doctors, and curiously enough, a chef.

David Nicholls is a world-known, Michelin Starred-chef whose son Daniel became paralysed in an accident in 2003. Since then, he has tried everything possible to help his son, including creating the Nicholls Spinal Injury Foundation (NSIF) which aims to raise awareness of paralysis and fund any promising cure projects.

Spinal surgery breakthrough

Darek Fidyka, showing the extent of his recovery

One of these donations was used by a team of researchers at UCL to pioneer a mechanism for nerve regeneration in spines. They were lead by Professor Geoffrey Raisman, a scientist with a long history in nerve cell innovations. He was the discoverer of ‘plasticity’, a quality our bodies possess by which damaged nerve cells can regenerate. Although this idea was controversial at first, it eventually opened the door for possible repair treatments.

His newest brilliance involves implanting cells from the nose to the damaged area in the spinal cord. But this doesn’t work with any nose cells. It specifically requires OECs, which stands for olfactory ensheathing cells, and their role is to repair broken nerve cells in the nose so that communication between these and the brain is restored, and our sense of smell works correctly.

This idea was applied by a group of doctors in Poland, lead by spinal repair expert Dr Pawel Tobakow, with surprising results. The patient they treated was Darek Fidyka, a man who was stabbed in the back so his spinal cord was cut in two, leaving a gap with severed nerve cells. The operation consisted of implanting Fidyka’s OECs into the gap where these, instead of healing nose nerve cells, would bridge the separated spinal nerve cells so given time and the appropriate rehabilitation, the spine would no longer be divided into two.

And so it happened. Two years later, the nerve cells on either side of the cut have regenerated and the connection between these has been re-established, effectively ‘curing’ the paralysis. The changes to Fidyka’s life have been enormous. Weeks ago, he wasn’t even able to feel his legs. Now, not only is he regaining some feeling, but can also walk and is even capable of driving a car! More patients are waiting to be treated with this method in hopes of recovering from this horrendous condition and to prove this treatment effective enough so even more injured people can be cured and the fullness of their lives restored.

Unruly HIV

HIV is still fighting back. After famous claims of having rid a baby of the HIV virus and therefore ‘curing’ it, a few months later the child seems to be affected again.

The news an 18 months old baby had been ‘cured’ from HIV spread like wildfire in the scientific community. This promising medical feat was accomplished by treating a newly-born baby, daughter of an HIV-sufferer, with three antiretroviral drugs (those drugs used to treat HIV). But after a period of 18 months, the treatment was stopped, and the baby left, and nothing more was known of her. Or at least that was the case until March this year, when during blood analysis, after almost a year with no drugs, the girl was found to have no HIV virus circulating in her blood.

This was praised by many scientists as being the solution to the HIV problem- providing the drug in the very early stages of the disease, a tactic which was already known to help treat more effectively the disease. But their hopes were crushed this week when in another check up the patient had plenty of the viruses in her body. This, together with high levels of the antibodies for this virus and a decrease in white blood cells, concluded she was no longer ‘cured’ from the disease.

A possible reason for this reappearance is the fact that HIV virus, although mostly found in the blood, can sometimes hide in other tissues, so when a person is treated with antiretroviral drugs, it only kills those virus cells in the blood. The effect the medicine had on the infant was of wiping out the virus in her blood, so that there were so few virus cells hidden in the rest of her body that her own immune system was capable of handling the rest. Obviously though, this balance was unstable and it was interrupted, setting off an increase in the virus population so the disease was in effect again.

hiv virus

This is an example of an HIV virus, which causes HIV and can lead to AIDS. Its cure has been sought after for a long time, and it seems we still have to work towards it

Researchers have concluded that there are other factors that control the limitations of the virus in the body, not only numbers, so it is their goal to find these and exploit them to increase the effect of antiretroviral drugs. This could ultimately lead to more effective drugs which could be taken less regularly but still maintain the virus at bay. Another objective is to develop a new treatment that targets the hidden virus cells too, so that the numbers can be reduced even further and maybe someday the virus can be completely wiped out from the body.

Embracing New Organs

There is a wide variety of diseases, such as cystic fibrosis, kidney failure… that can be treated or even cured with an organ transplant. However, a disadvantage of this otherwise great cure is the fact that since the new organ doesn’t really come from you, your immune system might attack it. The current solution to this problem is a mixture of immunosuppressant drugs, which although work in making the body accept foreign organs, they can cause very uncomfortable and serious side effects.

This problem is what lead Allan Kirk, scientist at Emory University in Atlanta, Georgia, to look for possible alternatives. His team and himself eventually managed to create a small group of drugs, only three, to substitute the previous cocktails of medicines. What’s even better is that his drugs can even reset the immune system so that the patient must only take one drug every month instead of daily, as they do now.

Well then let’s meet his three drugs and learn how they work. The first one is alemtuzumab, and has to be given at the same time the organ transplant is happening. What it does is it completely destroys all white blood cells in the patient’s body that might attack the organ. It’s like making the immune system and its army of defenders start from 0.
The following drug is belatacept, and is given to the patient when new white blood cells start to appear. This drug acts in a way that makes the new cells accept the new organ as part of the patient and leave it in peace.
Lastly, a dose of sirolimus is administered. It is a normal, immunosuppressant drug whose function is to prevent any of the white blood cells that survived the original massacre from the alemtuzumab from damaging the organ.
Altogether, most patients would only have to take the initial drugs, and after those, only one injection a month, which is considerably more comfortable than the current treatment.


This cocktail of drugs has been replaced by only 3 drugs

Kirk has been carrying his experiments in a group of 13 people, and a year after they started the treatment none of them have shown signs of rejection. But Kirk has had to ask them if they wanted to stop taking the sirolimus and most did. The ones who chose to keep with it are perfectly fine, and those who got off of it are also fine, but now have to take monthly belatacept injections.

The implications of this revolutionary treatment are incredible. Up until now it has only been tested on a small sample of people, and all with kidney transplants, but Kirk and his team plan on doing larger groups with other organ transplants.