Super Brain Network

Although it may seem directly taken from a science fiction movie, scientists at Duke University have actually managed to connect the brains of several organisms so that without any real communication they have been able to work together to carry out tasks.

In a series of experiments, researchers opened the skull of both monkeys and rats and using electrodes and wires, linked members of the same species together so that, even if they could not share complex thoughts or emotions, they could synchronise their neural activity.

When doing some experiments on rats, the connection was investigated by having one of the animals undergo an electrical stimulus, so its brain activity increased. The other rats, despite not being stimulated directly, automatically changed their neural activity to match that of the first rat, so it looked like they too had received the stimulus, and felt its effects.

But not only does this connection make them more ‘empathic’, it also makes them more intelligent. When scientists sent temperature and atmospheric pressure information into their brains, coded by electrical impulses, the rats could put all the information they had received together and solve problems regarding the chance of rainfall. They could do this by themselves, without any linking, but the brain network helped them obtain better scores.


Linking brains is no longer a science fiction movie plot

With monkeys, three of them were connected through the motor region of their brains, after being trained individually to control a virtual arm with thoughts alone. Once they were connected, each was able to control only certain aspects of the arm’s movement, like only being able to move the arm horizontally and vertically, and even those abilities it had to share with another monkey, so that each had an equal contribution to the movement in that direction. However, as messy as this sounds, they synchronised and managed to work with each together, combining their skills to control the arm and grab an imaginary ball displayed on the computer.

The applications for this are not to make a huge human population brain network, where we can share our thoughts and emotions, as not only are they too complex for it to be possible to share them this way, but it would also be unethical and have privacy issues. However, it can be used in people who have had some damage to their brain. For example, someone who has suffered from a stroke and can no longer talk normally can be connected to a healthy person, so said area synchronises with the healthy area and accelerates the healing process.

Prophetic Neurones

Being able to tell the future is a superpower that we have all wanted at some point or another in our life. And although it seems like science-fiction material, we actually do have this ability. Granted, it is not as accurate or far-reaching as we would like, but it is still quite impressive and useful at a smaller scale.

In our everyday lives, we often encounter situations where we need to predict what other people are going to do. These can range from normal conversations to arguments, or even playing games. It is precisely this last scenario which can be used to investigate how exactly we are able to foretell other people’s actions.

The game in particular is called Prisoner’s Dilemma, and the experiment consists of having monkeys play this game and examine any patterns in their actions. In this game, two people face each other with two options: either cooperate or refuse to work together. Every different combination of choices yields different results. For example, if one declines and the other cooperates, the one that declines gets a great reward, whereas the other doesn’t. If both cooperate, they both get a smaller reward. If both refuse to work together, they get the smallest prize. So to win the most in this game you have to be good at predicting what your opponent will do and acting accordingly.

A team at Harvard Medical School made monkeys play this game hundreds of times, but did it so that each time the monkeys could see what their companion had chosen. This way, they could base their decision for the next turn on what the opponent had done and predict how they could get the greatest reward.

anterior cingulate

Highlighted in yelllow is the anterior cingulate, where these ‘clairvoyant’ neurones are found

At the same time, their brains were monitored. Specifically, an area called the anterior cingulate, which has been shown to be involved in the decision making process. The results showed that some neurones in this area acted according to a pattern, depending on the decisions the monkeys took. But to make the results more reliable and make sure these cells were responsible, they used some exterior electrical impulses to inhibit them and prevent them from working correctly. By doing this, the monkeys became more selfish and refused to cooperate more often, even though tactically it made no sense, as it would result in a lower prize. Since confusing these neurones caused the monkeys to make different choices, especially involving disconnection from their partner and a lack of prediction of their movements, it is safe to say that the specific group of cells in the anterior cingulate have an effect on foretelling the future.

Although this theory has only been tested in monkeys, the process in humans is thought to work in a similar way, and studying it can help study social interactions between humans, in light of diseases such as autism.